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C O A L E S C E N C E  OF OIL  D R O P S  ON T H E  S K E L E T O N  

OF A P O R O U S  M E D I U M  I N  F I L T E R I N G  A W A T E R - O I L  M I X T U R E  

V.  I. P e n ' k o v s k i i  UDC 532.546 

Two mathematical models of filtration coalescence of oil drops when a water-oil mizture moves 
through a porous material are proposed. In the first model, coalescence is interpreted as the 
process of sorption, i.e., the accumulation of the oil phase on the pore surface up to a definite 
critical value above which the larger drops involved by a filtration flow stall. The second model 
assumes that the motion of the sorbed oil and the entire mixture obeys the generalized Darcy 
laws. 

I n t r o d u c t i o n .  Accidents on oil pipelines frequently lead to oil contamination of the catchment basins 
of rivers. In high-water periods, water-oil mixtures (emulsions) containing oil drops of various coarseness and 
solid particles which are water-repelling due to the presence of an oil film inflows from polluted territories into 
the rivers and their affluents. In contrast to large drops, smalbsized oil drops and the solid particles embedded 
in the oil film can be in an immersed (suspended) state for a long period, which decreases the effectiveness 
of the existing methods of oil gathering from the surface of the channels. The problem of drop enlargement 
via their coalescence and, hence, the probability of their rise to the surface can be partially solved by filtering 
the mixture through the thickness of a water-repelling porous medium in the form of permeable gravel-dikes 
(dams). 

Below, we shall consider two mathematical models of filtration coalescence. It seems to us that these 
models and the results obtained can be useful for solving the problems of other technological processes. 

Basic Equa t ions .  We denote the densities of oil, water, and the emulsion (the water-oil mixture) by 
P, Ph and Pc, respectively. Let C be the mass concentration of oil in the mixture. Since oil occupies C/p of 
the unit volume and water occupies 1 - C/p of this volume, for the density pc of the mixture we obtain 

p ,  = p l ( 1  - eC/p) [e = ( p l  - P)/pl]- 

In a free flow of a low-concentration mixture, the oil particles float separately, and it is unlikely that they 
will collide and coalesce with each other [probability of the order of (C/p)2]. The probability of coalescence 
considerably increases if the mixture is filtered through a water-repelling porous medium. In this case, the 
oil particles touch both the free water-repelling sites of the internal surface of the pores, adsorbing on them, 
and the precipitated particles, enlarging the latter up to the formation of the coupled films. The adsorption 
rate j l  of the oil particles is proportional to the probability of their collision with free sites, which is in turn 
proportional to the product of the particle concentration in the mixture and the concentration of free sites 
on the pore surface. If we assume that the free site, earlier occupied by a certain particle, remains free for 
other particles and, hence, the concentration of the sites remains constant, we obtain j l  = klC, where kl is 
an experimentally determinable factor. 

The saturation s of a porous material with oil increases with time. If a certain value of s = s. ,  which is 
characteristic of the given material., is exceeded, the oil particles, which have been attached to this material, 
begin to move. Here, two variants of displacement are possible, depending on the grain sizes, the geometry 
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of the porous space, and other physicochemical properties of a medium: (1) formations of hydrodynamically 
coupled oil films on the skeleton of the medium and their filtration under the action of a certain pressure 
gradient; (2) the stall (desorption) of the enlarged particles from the grain surfaces and their return to the 
mixture. The first variant of displacement occurs in the filtration through fine porous media like sand, and 
the second is inherent in the motion through the gravel-crushed stone embankments. Generally, both variants 
of displacement are not mutually excluding; however, they are described by equations different in form. 

C o m b i n e d  F i l t r a t i o n  of  a M i x t u r e  and  an  Oil F i lm.  Let h and hi be the pressures (in meters 
of the water column) in the films and the water-oil mixture, respectively. They differ by the magnitude of a 
capillary jump he(s) according to the relation 

h = hi + he(s). (1) 

The pressure hr in a floating oil drop with radius r is determined by the Laplace formula hr = hi +2a i r ,  
where a is the surface tension on the water-oil boundary. For water-repelling porous media with hc <~ 0, we 
have hr > h, which promotes the coalescence of the drop when it touches the oil film on the surface of the 
medium's grains. 

According to the theory of two-phase filtration [1], the velocities of the mixture vl and of the motion 
of the coupled oil phase v are determined according to the generalized Darcy laws: 

Vl = - K l f l ( s , s * )  Ohl - K  f ( s , s . )  Oh Oz '  v = ~x '  (2) 

where K1 and K are the filtration coefficients of the medium for the fully oil- or mixture-laden pores, 
respectively, )'1 and f are relative phase permeabilities satisfying the conditions f ( s , s . )  = 0 for s ~< s, 
and fl(O,s*) = 1 a n d / l ( s , s * )  - 0 for s /> s* and f (1 , s , )  = 1. 

The transfer of the  oil particles in a porous medium by the common flow is accompanied by the 
phenomenon of filtration dispersion. Therefore, according to the Fick law, we write the mass flux j of the 
particles in a mixture in the form 

OC 
j = - D  ~ + vlC, (3) 

where D = vld/2 is the dispersion coefficient for granular media [2] and d is the characteristic size of the 
grains. 

The governing equation (1) and the laws of motion (2) and (3) should be supplemented by three laws 
of conservation - -  of the oil and water phases in a mixture, respectively: 

~_~ Oj - k lC;  (4) m [(1 - s ) C l  + o-g = 

0 0 
m ~-~ [ (1 - s ) p l ( 1  - C/p)] + "~x [p1(1  - C/p)vl] = O, (5)  

and of the oil phase in the coupled films on the grain surface: 

Os 0 
+ = k l c .  (6)  

Equations (1)-(6) represent the closed nonlinear system for the desired functions C, s, hi, h, vl, v, 
and j .  It is rather complicated, and we failed to obtain explicit solutions for it. Generally, it should be solved 
numerically with allowance for the corresponding initial and boundary conditions. However, under additional 
simplifying conditions having an evident physical meaning one can construct explicit solutions. We consider 

two examples. 
E x a m p l e  1. Let a water-oil mixture be filtered through a specimen of a highly permeable medium 

with given rate vl = v0 at the entry z = 0 and the concentration C = Co. As is known [3], highly permeable 
media are characterized by small jumps of the capillary pressure at the boundary of the water-oil phases and, 
therefore, one can set hc(s) = 0 in Eq. (1), i.e., h = ha. We assume that the process is steady-state and the 
length l of the specimen is such that the Peclet number Pe = vl l /D = 21/d is fairly large, tn this case, it is 
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possible to ignore the dispersive scattering of the particles in a mixture, and the problem is reduced to the 
integration of a simple system of ordinary differential equations 

d 
(vlC) = - / q C ,  

with the boundary conditions 

DI(0) = DO, 

and the final relation of the form 

D = , D1f(8, s,)/f1(s, :) 

d v C  d_~[(1 _ C)D1] = 0 (7) 
dx kl P 

c(o)=Co, D(o)=o (8) 

(c~ = K/K1). (9) 

The last condition in (8) expresses the absence (the continuity) of a flow of coupled films in the input cross 
section of the specimen. 

With allowance for conditions (8), the integration of system (7) gives 

t) D0(U0 -- 1/) D0(I -- U0) ~I uo(l - u) uo - u 
= , ZYl = , - -  x = In + 

1 -- u 1 - u a u(1 -- uo) (1 - uo)(1 - u) 

[a=(1-uo)vo, u=C/p, u o = C o / p ,  O < u < ~ u o ] ,  

The distribution of the saturation s of the specimen's porous space with the oil precipitated on the particle 
surface can be obtained by formula (9), into which it is necessary to introduce the expressions for v and Vl. 

E x a m p l e  2. The estimates show that for mixtures with the concentration Co of the or(ler of 10 -4 g/cm 3 
(100 rag/liter), in the initial system (1)-(6) the value of C/p may be ignored in comparison with unity. With 
this in mind, we consider the same problem as in Example 1, leaving the dispersion term in Eq. (3). In addition 
to (9), we obtain vl = v0 = const and the problem is reduced to the integration of the system 

d2C dC 
D ~-Tz 2 - vo ~ - kl C = 0,- 

with the boundary conditions 

dC 
z=0: v = O, -D ~ + voC = voCo; 

dD 
= klc/p (1o) 

dC 
x - l :  dx =0" (11) 

The conditions for the function C(z) express the continuity of a dropwise oil flow at the specimen edges. 
With allowance for the boundary conditions (11), the combination of the equations in system (10) 

produces the first integral of the form 

dC 
p,, = D + DoCCo -- C ) .  

Substituting here the value of D = rod~2 and introducing the notation 

d dC Co - C 
~(z) = 2p---~ d-'x- + pa ' (12) 

we find the distribution of the saturation s of the porous space with the film oil as an implicit function 
from relation (9): f (s ,  s,)/ f l(S,s*) = ~(x). In particular, if the experimentally determinable relative phase 
permeabilities are approximated by functions of the form 

f (s ,n . )  = ((s - s,)/(1 - s.))",  f l(s,s*) = ((s* - s ) / : ) "  ( .  3.5, s* 1 - s.), 

we have s(z) = (s. + ~l/a(x)s*)[(1 + ~l]"(z)). 

The function C(z) = A1 exp (c~lz) + a 2  exp (a2z), where cq,2 = (1 4- ~/1 + 2kld/vo )/d are the roots of 
the corresponding characteristic equation (the subscript 1 corresponds to the plus sign), is the solution of the 
first equation in system (10), which satisfies the boundary conditions (11). Since d/l << 1, one can set c~a ~ 2/d 
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and a2 ,.~ - k x / v o  with a good approximation. In this case, A2 = C0/(1 + 61 ), A1 = Co6x exp ( - P c  + 6)/( 1 + 61 ) 
(6 = vk/vo and 61 = 6/Pc, where vk = lkx is the total adsorption rate), and the function C(x) takes the form 

C/Co  = (exp ( -6xl )  + 61 exp [-(6 + Pe (1 - xl))])/(1 § 61), 

where xl = x / l .  Substituting it into expression (12), we obtain 

~(x) = C011 - exp (-6x/Z)]/Cp~). 

Clearly, the process of filtration dispersion greatly affects neither the velocity of the motion of the film oil nor 
the distribution of the latter over the specimen length. 

S o r p t i o n - D e s o r p t i o n  Model .  The dropwise displacement of oil, which is attributed to the desorption 
of coarse particles, is accompanied by the generation of a new water-oil mixture, in which the radii of the 
coarser drops are r /> r . .  The characteristic minimum radius r .  depends on the shapes and sizes of the grains 
in a porous medium and, possibly, on other physicochemical factors. 

Let C1 and C2 be the concentrations of the fine (r < r . )  and coarse (r/> r . )  oil particles in a mixture. 
The total oil concentration is C = C1 + C2. The basic source of the coarser particles in the common flow is 
their desorption from the grain surface when the oil saturation s of the porous space of the medium exceeds 
a certain limiting value s,.  We assume that the desorption rate j2 is proportional to this exceeding, i.e., 

j 2  = k 2 ( s  - - 

where ks is the coefficient of desorption rate and r/(x) is the Heaviside unit function. The precipitation- 
separation process is then described by the kinetic equation 

0s 
= k a c -  k2(  - - ( 1 3 )  

which is the analog of Eq (6). Accordingly, the conservation law of the total mass of the dropwise oil in the 
mixture takes the form 

rn O [ ( 1 -  s)C] = O ( D OC'~x - vaC) - k lC  + k2(s - s.)yl(s - s,) .  (14) 

Equations (13) and (14) should be supplemented by the analog of Eq. (4) written for the function C1 and by 
Eq. (5). For problems with a given rate of the mixture (v0 at the entrance), the four equations are the closed 
system for determining the four desired functions C1, C, s, and vl. 

As applied to low-concentration mixtures (C/p  << 1), the system becomes simpler. In this case, one 
can conclude from Eqs. (5) and (13) that vx m v0, and, ignoring an insignificant decrease in the porous space 
of the medium owing to the presence of the sorbed oil (s is small compared to unity), we obtain the system 
of three quasi-linear equations 

OC1 02C1 OC1 
m ~ =  D Ox 2 - v o ~ - k l C a ,  

OC _ 02C OC 
m - -~  - vo kxC + k s ( g  - g . ) y ( g  - g . ) ,  (15) 

ON 
= k l C  - k 3 ( g  - N,),7(N - N,) .  

0t 
Here N = rnps, N ,  = raps,,  and k3 = k2/(rnp). The boundary and initial conditions for system (15) can be 
written in the form 

x = 0 :  CI = C o , C = Co, x = l: ~OCa =0 ,  OC = o, 
Ox Ox (16) 

t = 0 :  Cl=q01(x), C=~o(x),  N = N 0 ( x ) .  

We note that problem (15)-(16) is partially split, because the first equation can be solved irrespective of the 
other two equations. In addition, for the zero initial data N = ~0 = q01 = 0 and all t < t, = N, / ( k lCo)  the 
function r/(N - N,) vanishes, and the second equation of system (16) coincides in form with the first eqtiation, 
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x - ' 0 :  

The Laplace image C'(x, p) 

and their solutions - -  the functions C1(x, t) and C(z,  t) = C1 + C2 - -  are expected to differ from each other 
only by a factor in this time interval, since the boundary conditions for them are the same. We find this 
solution by the Laplace transform method. For brevity, we replace t/rn by t and consider the problem 

Ct = DC,~ - voCz - klC, Nt = klC, 

C = C o ,  x = l :  Cz=O,  t=O:  C = O ,  N = 0 .  
oo 

= / e - P ' C ( x ,  r ) d r  of the desired function C(x, t) is found by integrating the 
0 

respective ordinary differential equation with allowance for the boundary conditions and has the form 

C(z, p) = Co exp (voz/(2D) )(cosh a z  - sinh az(vo/(2D) cosh al + a sinh al) /(vo/(2D) sinh al + ~ cosh al) )/p, 

where a = a(p) = Cvg + 4D(kl  + p)/(2D). 
The image has a countable set of simple poles at the point p = 0 and the points p = pn = - D p 2 / l  2 - 

vg/(4D) - kl. Here pn are the roots of the equation tan pn = -2p , , /Pe  (Pe = vol/D). Returning to the 
preimage by calculating the residues in these singular points, we obtain 

2CoD [ k#  Pe ] 
C(z , t )  = Coo l------ ~ -  exp - rn + - ~  (z - x .( t))  

o0 exp(_Dp~t](ml2))  p~(Pe+4#~) /Pe  z 
• Y]~ k, + V2o/(4D) + Dp~/l  2 B e +  2 + 4p~/Pe sin/t,  7 '  (17) 

n = l  

vo/(2D) cosh aol + sinh a0t . . '~ (vox ~ cosh aOX - 
Coo = Co exp k2D 1 v ~ s - ~ n h a - ~ o l +  ~xo'~-oos~aaoiS'nna~ ' ao = a(O), z. = vt/rn. 

t 

The function N(z ,  t) for t < t .  is calculated by the simple quadrature N(z ,  t) = kl / C(z ,  T)d~ ' .  Similarly, o n e  

0 
can obtain an analytical representation of the solution of system (15) if N(0, z)/> N, at the initial moment of 
time t = 0. In this case, we have r/(N - N.) = 1, and system (15) becomes linear. Omitting the cumbersome 
calculations, we present the final form of the solution: 

~00 = I -- ~ exp = \p+(klk3 + rn(k3 - p+)2) 

(k3 -- p~)2 exp_.(--p~'t)~ Pe 2 + 4p 2 z 
"~ p~(kxka + (ks - p ~ - ) 2 ) )  Pe(Pe + 2)4p2, p~ sin Pn T' 

t 

g ( z , t )  = iV. + kl / C(x , r )  exp ( -ks( t  - T))  dT. 

0 

The notation here is as follows: ~ = (b. 4- ~/~ - 4 e .  )/2, b. = ka + ks + Dm~[12, c,, = rn~k3D/l 2, and 
m~ = p2 n + 12v2o/(4D). The function Cl(z ,  t ) is  calculated by formula (17), in which Co should be replaced by 
C ~ In the general case, problem (15)-(16) is solved numerically. 

The case of a steady-state regime is important for practice and the laboratory determination of the 
parameters of the problem. Assuming that ON/Ot = OC[Ot = OC1/Ot - 0 and D = vod/2 in Eqs. (15), with 
allowance for the boundary conditions (16), for x = 0 and x = I we obtain the simple solution 

( l / dc~176176  s inh .ox / l )  
Cl(z) = C O exp ! z / d) cosh ~z / l - l / d sinht~o + t~o cosh U0 

C = Ca + C2 = Co, N = iV. + Cokl/k3 (po = lao). 

Since the Peclet number Pe = 2lid is usually large in comparison with unity, keeping the first-order quantities 
in the expansion of the function CI(z) with respect to the small parameter Pe -1, for the concentration Cl(1) 
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Fig. 1 

of small-sized particles at the exit, and for z = 1 we obtain 

e l ( l )  -~ 60~  "a t- 6Pe -1) exp (-~) ,  

where 6 = kll/vo is the ratio of the integral sorption rate to the filtration rate. It is evident from this formula, 
which is useful for processing experimental data, that the effective work of the filtering layer mainly depends 
on the magnitude of the dimensionless parameter 6 of the problem. 

Figure 1 shows the numerical results obtained for problem (16) and (17) for the initial data of the 
laboratory experiment: m = 0.45, v = 19 cm/h,  C0 = 85.10 -4 g /cm 3, C O = Co, l = 68 cm, ?(x)  = ?l(X) = 
No(x) = O, d = 0.2 cm, kl = 0.45 h -1, N. = 10 -3 g/cm 3, and k3 = 5 h -1. The curves correspond to the 
subsequent moments of t ime with an interval of 0.4 h. It is seen that in the adopted conditions, the sorption 
almost reaches a steady-state regime aSter 4 h of continuous filtering of a water-oil mixture. 

Preliminary results of the experiments performed on a filtering element (the filtration coefficient is 
KI = 7.8 m/h)  shaped like a tube of cross section 2- 10 -4 m 2 and length l = 0.68 m, which is filled with glass 
crumb, agree qualitatively with the theoretical results. 

Additional experiments on the specimens of porous media with a different degree of particle coarsity 
are necessary for solving the problem of the range of applicability for each of the proposed mathematical 
models for filtration coalescence. 
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